

poor resolution. Two important techniques, electric and magnetic force microscopies (EFM, MFM), are unfortunately not included. Nevertheless, the book can be recommended as a reference source for scientists as well as a textbook for advanced students. For the specialist it is a valuable source of information.

Karl-Heinz Ernst
Laboratory for Nanoscale Materials
Science
Empa—Materials Sciences & Technology
Dübendorf (Switzerland)

The Potential Distribution Theorem and Models of Molecular Solutions

By *Thomas L. Beck, Michael E. Paulaitis and Lawrence R. Pratt*. Cambridge University Press, Cambridge 2006. 230 pp., hardcover £ 65.00.—ISBN 0-521-82215-7

To write a book about molecular theory is a real challenge. Theories of molecular liquids have never been simple. Most of the attempts at writing such books have led to opinions like that expressed in the first English edition of the influential textbook *Statistical Physics*, by Landau and Lifshitz, in 1969: "We have not included in this book the various theories of ordinary liquids and of strong solutions, which to us appear neither convincing nor useful". Such a statement underlines the limitations of available theories of liquids at that time. Thus, it is very pleasing that Thomas L. Beck, Michael E. Paulaitis, and Lawrence R. Pratt have taken on this challenge by presenting a book entitled *The Potential Distribution Theorem and Models of Molecular Solutions*. All three authors are well-known experts in the fields of quantum simulation methods, phase theory of solutions, and

related modeling, as well as the molecular thermodynamics of hydration. In the introduction to this nice book, the authors reassure us that practical molecular theory can be simpler than a first impression suggests.

The authors decided to emphasize those aspects of the theory of molecular liquids that are different from the familiar theory of atomic liquids. One reason is that the theory of simple liquids is well described elsewhere. The other reason is that especially the molecular aspects of solutions are essential to topics of current interest such as ion channels.

The book is clearly structured in eight chapters. The first chapter gives a historical sketch of efforts in the last few decades to describe liquid and solution properties. Different approaches have been used to characterize simple (atomic) liquids, molecular liquids, and complex liquids. The authors emphasize that theories of molecular liquids require molecule-specific features, which the theory of simple liquids does not provide. In that sense, molecular liquid water is recognized to be a particularly complex molecular liquid. The second chapter shows that an understanding of statistical thermodynamics is fundamental to the appreciation of molecular solutions. Here the reader will not find anything new beyond the contents of well-known textbooks on thermodynamics and statistical mechanics. However, the knowledge of how free energies and chemical potentials can be calculated from the partition function will be needed to understand the central theorem of the book, which is stated in Chapter 3. The potential distribution theorem (PDT), which was developed by Widom in 1963, and is sometimes called Widom's particle insertion formula, is the central organizing principle in the theory and in the realistic modeling of molecular solutions. The authors offer a couple of reasons why the potential distribution theorem has not been widely accepted. However, they show that the theorem gives some vital theoretical insights into molecular modeling, as approached either through computer simulations or by purely theoretical methods in general. They point out that this theorem has recently stimulated a new stage of development in the molecular modeling of solutions,

namely: quasi-chemical theories that promise accurate molecular and chemical detail on the basis of available electronic structure computational methods of molecular science. The authors see PDT as directly analogous to the partition function, which expresses the Gibbsian ensemble formulation of statistical mechanics. PDT can be regarded as a formula for a thermodynamic potential in terms of a partition function. However, in contrast to Gibbsian partition functions, the PDT is built upon a local view of thermodynamics and depends on local information.

The authors have made an effort to simplify this complex subject, with down-to-earth presentations of molecular theory. The chapters about PDT and models of molecular solutions lead to the heart of the book, which is the idea of a quasi-chemical theory (Chapter 7), followed in Chapter 8 by its application to particular examples, such as hydrophobic effects and hydrophilic phenomena.

The authors discuss the subject in a concise and simple manner, and illustrate the text with useful models of solution thermodynamics and numerous exercises. Modern quasi-chemical theories that permit statistical thermodynamic properties to be studied on the basis of electronic structure calculations are developed at length, and the theoretical results are tested by comparing them with ab initio molecular dynamics simulations.

This book presents a fresh view on old problems and on recent intensive studies. It is suitable for students with a strong background in a physical science, and especially for graduate students embarking on research activities in molecular modeling of solutions in chemistry, chemical engineering, biophysics, molecular biotechnology, and nanotechnology. This beautiful book belongs in every physics and chemistry library.

Ralf Ludwig
Institut für Chemie: Physikalische und
Theoretische Chemie
Universität Rostock (Germany)

DOI: 10.1002/anie.200685460